

CDA 3201L – Computer Logic Design Laboratory

Lab Exercise 3

Combinational Logic Circuits (III)

Multiplexers are not allowed to be used for this lab exercise.

Part A:

Show that you can read the data sheet to identify the inputs and outputs of an Adder IC (74LS83) by demonstrating the addition operation of two 4-bit numbers:

- Assume that the two numbers are unsigned positive numbers
- Assume that the numbers are in 2s complement form. Note that in this case the output is also 4-bit number in 2s complement form, i.e., the carry output will be ignored.

Part B:

You need to design a circuit that implements the functions in the following table:

S0	S1	Function
0	0	$A + 1$
0	1	$A - B$
1	0	$A + B$
1	1	$A - 1$

S0 and S1 are 1-bit control inputs to select the function of the circuit. Inputs A and B are 4-bit numbers in 2s complement form. The output is also a 4-bit number in 2s complement form. You are allowed to use only one TTL 7483 4-bit adder to implement all the functions. But any number of other components (except the adder) can be used.

HINT: Design a combinational logic circuit to modify the input B and the “carry input” of the adder depending on the control inputs S0 and S1.

Important: Lab grade will depend on the working of the circuit & will be checked off by your lab instructor.

Questions:

- Is the output valid for the following input combinations:
 - $S0 = 0, S1 = 0, A = 7, B = 3?$
 - $S0 = 0, S1 = 1, A = 7, B = 3?$
 - $S0 = 1, S1 = 0, A = -4, B = -5?$
 - $S0 = 1, S1 = 1, A = -8, B = 6?$

2. What is the range of inputs (for both A and B) that will produce the valid output for all the functions?

References:

“Fundamentals of Logic Design”, 7th Edition, by Charles H. Roth Jr. and Larry L Kinney, 2014, ISBN-13: 978-1133628477 or ISBN-10: 1133628478, CENGAGE Learning, Stamford, CT, USA

Notes:

1. You can use http://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits to find the TTL chip you need.
2. Datasheets of some commonly used TTL chips can be found at the following sites:
 - <http://www.jameco.com>
 - <http://www.ti.com/sc/docs/pssheets/databook.htm>
 - <http://www.datasheetcatalog.com/fairchildsemiconductor/1/>